Dry Litter Technology for Small-scale Piggeries Glen K. Fukumoto CTAHR, University of Hawaii at Manoa Palau Livestock Management Academy Republic of Palau, March 21-25, 2011

Today's Outline Celebrating the babii (pua'a) Water quality challenges in our islands Dry Litter Technology Evolution Introduction to compost

It's part of our cultural heritage and for celebrations of life! Birth First Birthday Graduation Marriage

Death

Tropical Pacific Priorities

- Drinking Water & Wastewaster Infrastructure
 Safe and Available Drinking Water 24/7
- Non Point Source Pollution

 Increasing interest in the section
- Coral Reef Ecosystem Protection

Alexis Strauss, Associate Regional Director U.S.E.P.A., Region IX

Challenges in our Islands ECOSYSTEM/GEOLOGY POPULATION MANagement of LIVESTOCK

Challenges for Island Ecosystems

- · Surrounded by water
- Limited land area
- Flashy flows from rainfall events
- Short paths to water resources (ground, surface, coastal)
- Agricultural/Urban interface is blurred
 Concentration lead to accumulation in the watershed
- Many fragile tropical ecosystems

		_

Land	Area and
The Grow	ing Population
Land Area (mi²) • Hawaii	Pop.Density (people/mi²)
- Big Island 4,028+	· 198
Oahu 597 South Pacific	1,506 • 750
Amer. Samoa 77 Western Pacific	750 • 728
– Tinian 39	91
– Rota 33 – Guam 212	100 806
– Saipan 46	1,356
• Palau	•Northeast Coast = 641

Current Management Practices Observed in Many Small Piggeries

- Direct discharge
- · Uncontrolled flow
- No containment

Palau Water and Coastal Protection Regulations

- · Ministry of Health
 - Bureau of Public Health
 - Department of Environmental Health
- Environmental Quality Protection Board
- State Government
 - Eg. Koror State Sanitation

In the U.S., this is the bottomline ... and it's the law!

- No runoff of nutrients into waters of the state
- Contain nutrients; storage structure need buffer for 25yr-24hr storm
- Keep safe setback from water resources
- · Keep clean water "clean"

Pathways by which Manure Contaminates Water

Pollutant Pathway 1) Nitrate-N 2) Ammonia-N Runoff & Aerial deposition 3) Phosphorus Surface water runoff 4) Pathogens Surface water runoff Surface water runoff Surface water runoff

18

Water Quality Contaminants in Manure

5) Organic Matter

Possible Environmental / Health Risk 1) Nitrate-N Human Health 2) Ammonia-N Fish Kills 3) Phosphorus Eutrophication 4) Pathogens Human Health

19

Oxygen Depletion

Alternative Manure Management Practices are needed ...

- to avoid environmental degradation of our water resources
- to avoid possible human health problems
 Example Leptospirosis
- lets take advantage of the nutrients or "fertilizer" value for growing crops to save on imported nutrients.

Paradigm Shift ...

- Today's educational program is focused on <u>RECOVERY</u> and <u>BENEFICIAL USE</u> of nutrients rather than disposal
- Also to incorporate low volume or no water systems.
- Change our perceptions about livestock manure from a Liability (odors, flies, pollution run-off/seepage) to a Resource (organic fertilizer, soil amendment)

Resource ... not Liability Nutrients ... not Waste

Let's focus on Beneficial Use of Nutrients for Crop Production

Birth and Evolution of the Dry Litter Technology

- Livestock Extension 1985
- Hog Farmer George Kahumoku
- Practiced the deep litter waste management system
- Aha moment!
- Proposal EPA 319 grant 1994.

Premise of the proposal What if ...

a system that was low tech, the system was practical, use no water for pen clean up, creates no offensive odors, reduce fly breeding, creates a new product off the farm, makes the regulators happy ...

Evaluations

- Pen Slopes
- Various Carbon Materials
- Animal Performance
- Odor monitoring
- Compost product
- Beneficial utilization

Odor, Hydrogen sulfide

Pen Slopes 40:1 20:1 10:1 Conventional
Production 44-53 28-46 11-18 30 - 54

Transport 112 - 144

Storage

66 - 98

Compost Product

RAW MATERIAL pH OC N C:N K MNH 6.2 1.2 34 TT 6.0 48 1.3 31 COMPOST MNH 2.9 6.0 38 2.8 13 0.6 7.0 23 38 1.6

Advantages

- No water is used in pen washdown
- No discharge of effluent from the pen
- Carbon interaction with nitrogen in the cocomposting process reduces odors.
- Low to moderate level of management to operate. The pigs do the work.
- Organic fertilizer by-product for crop use or sold as compost at favorable returns

Disadvantages

- Consistent supply of carbon is required adding effort in acquisition, transportation and storage.
- Cannot be adapted to existing piggeries with flat floors.
- Composting of resultant litter will require additional management

Renefits	to the	Matoro	had
Renents	TO THE	waters	nea

Water conservation.

Protection of surface, ground and coastal waters.

Nuisance vectors are minimized.

Odors drastically reduced.

Recycling of greenwastes, other carbon and organic material.

Cost Effectiveness

- No mechanical parts or specialized equipment required.
- The system is designed into the building structure, modular.
- Greater efficiency of land area.
- Adds value to greenwastes and other carbon sources.
- Creates a potential revenue stream from compost or savings from purchase of amendments.

Dry Litter Portable Pen

Advantages

- No water is used in pen washdown
- No discharge of effluent from the pen
- · Low level of management to operate
- Low capital and operating cost
- · Organic fertilizer by-product
- Requires a small "footprint" or land area
- Keypoint: place wire mesh under the pen to prevent the pigs from digging mud holes.

Disadvantages

- Consistent supply of carbon is required
- Applicable for very small scale operations
- Requires rotation/relocation every 4-5 months
- Cannot be used on steep or rough terrain
- Should not be used over critical water groundwater recharge areas

Composting

A natural process of aerobic, microbial degradation of organic matter

Feedstocks (Carbon & Nitrogen)
Oxygen
Moisture
Time

Advantages

- Composting is an old technology that is used world-wide for manure management.
- Composting is a natural biological process in which microbes convert the manure and plant material into a "humus" or organic soil-like material.
- Composted manure has no odor and is easy to use, so there are many more options for using the compost compared to
- The composting process will reduce the volume of the incoming material.
 - Experience during 2002 shows that the volume within a composting bin can shrink by 60%-80% in about 3 months

Benefits to the Soil

Increases soil fertility
Increases soil aeration
Increases water-holding capacity
Enhances plant disease suppression
Increases organic matter content
Enhances buffering capacity of soil
Increase soil erosion resistance
Increase microbial activity of soil
Increase microbial competitiveness

"Big Picture" Benefits

Recycles nutrients (fertilizer)
Carbon resource utilization
Saves expensive landfill space
Compost improve soils
Increase your plantation productivity

1	7

Disadvantages

- Composting is usually just one part of a system (e.g., a solids separator may also be needed at some sites).
- Some effort is required to manage the compost process (e.g., to load and unload the bins).
- It is possible that some pathogens are still in the material even after composting for about 3 months, so it is important to treat the material carefully (avoid direct contact and wash hands thoroughly after using).

Process, 'Pasteurization' temperatures.

Time, Temperature Aerated static pile:

must maintain a temperature of $\geq 55^{\circ}\text{C}$ (131°F) for 3 consecutive days.

Active - Windrow:

a minimum of 5 turns required during a period of 15 consecutive days, with temperature of the mixture \geq 55 $^{\circ}$ C (131 $^{\circ}$ F).

Characteristics of Good Compost

Aerobically produced
Diverse in plant and animal feedstocks
Stable, no odors, excess nutrients
Pathogen free
Weed seed free
C:N ratio 15-25:1
Moisture 45%-50%
Germinate >75% seeds

Composting in American Samoa

Composting in CNMI

	Ke Kmal Mesulang many thanks
•	for your participation in the workshop.
•	to the Workshop Sponsors & Coordinators
	- Palau Community College - CRE
	Thomas Taro, Felix Sengebau, Leilanie Rechelluul
	- Board of Agriculture
	Fernando Sengebau, Kashgar Rengulbai
•	to the Funding agency
	- USDA National Institute of Food and Agriculture